Algebra 2

1-01 Solve Linear Systems of Equations and Inequalities by Graphing

System of equations

- More than one \qquad that share the \qquad solution.
- Often, they involve more than one \qquad -.
- In order to solve them, you need \qquad equations as there are \qquad ـ.

Solutions to systems

- An \qquad that works in \qquad equations.
- Solutions are where the graphs \qquad .

Solve by graphing

1. Graph both equations on the \qquad graph.
2. Where they cross is the \qquad .
Solve by graphing $\left\{\begin{aligned} 3 x+2 y & =-4 \\ x+3 y & =1\end{aligned}\right.$

Solve by graphing $\left\{\begin{array}{c}3 x-2 y=10 \\ 3 x-2 y=2\end{array}\right.$

- Graph them all on \qquad graph.
- Solution is where all graphs \qquad .
Solve the system of inequalities
$\{x \geq 2$
$\left\{\begin{array}{l}x+y<3\end{array}\right.$

Solve the system of inequalities
$\left\{\begin{array}{c}y<-\frac{4 x}{5}-4 \\ y>-\frac{4 x}{5}+2\end{array}\right.$
$\left\{\begin{array}{l}y>-\frac{4 x}{5}+2\end{array}\right.$

Algebra 2

1-02 Solve Linear Systems Algebraically

Substitution

1. Solve one equation for \qquad variable
2. Use that expression to \qquad that variable in the \qquad equation
3. \qquad the new equation
4. \qquad back into the \qquad equation
5. for the second variable

Solve $\left\{\begin{array}{c}y=x+2 \\ 2 x+y=8\end{array}\right.$

Solve $\left\{\begin{aligned} 3 x+2 y & =8 \\ x+4 y & =-4\end{aligned}\right.$

Elimination

1. \qquad up the equations into
2. Multiply \qquad or \qquad equations by numbers so that one variable has the same \qquad , but opposite \qquad
3. \qquad the equations
4. \qquad the resulting equation
5. the value into one \qquad equation and solve
Solve $\left\{\begin{array}{l}2 x-3 y=-14 \\ 3 x-y=-7\end{array}\right.$
\qquad

Solve $\left\{\begin{array}{r}3 x+11 y=4 \\ -2 x-6 y=0\end{array}\right.$

Number of Solutions

- If \qquad variables \qquad after you substitute or combine and
- You get a \qquad statement like $2=2 \rightarrow$ \qquad solutions
- You get a \qquad statement like $2=5 \rightarrow$ \qquad solution

Summary of Solving Techniques

- When to graph?
- To get \qquad picture and \qquad
- When to use substitution?
- When \qquad of the coefficients is 1
- When to use elimination?
- When \qquad of the coefficients is 1
Worksheet

Algebra 2

1-03 Solve Linear Systems in Three Variables

- Linear equation in 3 variables graphs a \qquad

Solution to system in $\mathbf{3}$ variables

- Ordered ___

Is $(2,-4,1)$ a solution of $\left\{\begin{array}{l}x+3 y-z=-11 \\ 2 x+y+z=1 \\ 5 x-2 y+3 z=21\end{array}\right.$

Elimination Method

Like two variables, you just do it \qquad once.

1. Combine \qquad and \qquad to eliminate a variable
2. Combine \qquad and \qquad to eliminate the \qquad variable as before
3. Combine these \qquad equations to find the \qquad variables
4. Substitute those \qquad variables into one of the \qquad equations to get the \qquad variable

- If you get a \qquad statement like $8=0 \rightarrow$ \qquad solution
- If you get an \qquad like $0=0 \rightarrow$ solutions
Solve $\left\{\begin{aligned} 2 x+3 y+7 z & =-3 \\ x-6 y+z & =-4 \\ -x-3 y+8 z & =1\end{aligned}\right.$

Solve $\left\{\begin{array}{l}-x+2 y+z=3 \\ 2 x+2 y+z=5 \\ 4 x+4 y+2 z=6\end{array}\right.$

```
Solve \(\left\{\begin{array}{l}x+y+z=6 \\ x-y+z=6\end{array}\right.\)
    \(4 x+y+4 z=24\)
```


If there are infinitely many solutions

- Let \qquad (Use x, y, or z based on what is convenient)
- Solve for \qquad in terms of \qquad
- Substitute those to find \qquad in terms of \qquad
- Sample answer \qquad
You have \$1.42 in quarters, nickels, and pennies. You have twice as many nickels as quarters. You have 14 coins total. How many of each coin do you have?
$32 \# 1,5,9,15,17,19,23,43,47,51,53,55=12$ (You can solve them all by elimination if you want.)

Algebra 2

1-04 Perform Basic Matrix Operations (12.1)

Matrix

- \qquad arrangement of things (variables or numbers in math)
$\left[\begin{array}{cccc}2 & -1 & 5 & a \\ 2 & y & 6 & b \\ 3 & 14 & x & c\end{array}\right]$
- Dimensions
 by
- \qquad for the above matrix
- In order for two matrices to be equal, they must be the \qquad dimensions and \qquad elements must be the \qquad

$$
\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right]
$$

Find the variables $\left[\begin{array}{cc}2 & y+1 \\ x / 3 & 4\end{array}\right]=\left[\begin{array}{cc}w & -4 \\ 5 & z-4\end{array}\right]$

Adding and Subtracting

- You can only add and subtract matrices that are the \qquad
- When you add or subtract, add the \qquad elements.
$\left[\begin{array}{cc}1 & 2 \\ -5 & 4\end{array}\right]+\left[\begin{array}{cc}-2 & 5 \\ 4 & -3\end{array}\right]$
$\left[\begin{array}{cc}2 & -3\end{array}\right]-\left[\begin{array}{ll}3 & 4\end{array}\right]+\left[\begin{array}{ll}1 & 0\end{array}\right]$
$\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]-\left[\begin{array}{lll}0 & 3 & 1 \\ 2 & 5 & 2\end{array}\right]$
- Multiply each element by the \qquad
-

$3\left[\begin{array}{ccc}5 & -2 & 7 \\ -3 & 8 & 4\end{array}\right]$

The National Weather Service keeps track of weather.

June 2014	Benton Harbor	South Bend	July 2014	Benton Harbor	South Bend
Precip Days	13	18	Precip Days	14	15
Clear Days	16	13	Clear Days	18	18
Ab Norm T	12	19	Ab Norm T	2	8

What is meaning of the first matrix + second matrix?

Use matrix operations to find the total weather stats of each city.
$650 \# 1,5,9,13,15,17,19,21,23,25,29,33,35,37,39$, and Mixed Review $=20$

Algebra 2

1-05 Multiply Matrices (12.2)

Matrix Multiplication

- Matrix multiplication can only happen if the number of \qquad of the \qquad matrix is the same as the number of \qquad on the \qquad matrix.
- You can multiply a 3×5 with a 5×2.
- $3 \times 5 \cdot 5 \times 2 \rightarrow$ \qquad will be the dimensions of the answer
- Because of this \qquad !
$\left[\begin{array}{cc}1 & 2 \\ 0 & -3\end{array}\right] \cdot\left[\begin{array}{cc}-2 & 1 \\ 4 & 3\end{array}\right]$
$\left[\begin{array}{ccc}1 & 0 & 4 \\ -2 & 3 & 2\end{array}\right] \cdot\left[\begin{array}{c}-1 \\ 3 \\ 5\end{array}\right]$

Use the given matrices to evaluate $2(A C)+B$
$A=\left[\begin{array}{cc}5 & -9 \\ -1 & 3\end{array}\right], B=\left[\begin{array}{l}0 \\ 4\end{array}\right], C=\left[\begin{array}{c}2 \\ -6\end{array}\right]$

The members of two bowling leagues submit meal choices for an upcoming banquet as shown. Each pizza meal costs $\$ 16$, each spaghetti meal costs $\$ 22$, and each Sam's chicken meal costs $\$ 18$. Use matrix multiplication to find the total cost of the meals for each league.

	Pizza	Spaghetti	Sam's Chicken
League A	18	35	7
League B	6	40	9

Algebra 2

1-06 Evaluate Determinants (12.3)

Determinant

- Number associated with \qquad matrices
- Symbolized by \qquad or \qquad

Determinant of $\mathbf{2 \times 2}$ matrix

- Multiply along the \qquad diagonal and \qquad the product of the \qquad diagonal.
$\left|\begin{array}{cc}2 & -1 \\ 3 & 4\end{array}\right|$

Determinant of $\mathbf{3 \times 3}$ Matrix

- Copy the first \qquad behind the matrix and then \qquad the products of the \qquad diagonals and the product of the \qquad diagonals.
$\left|\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right|$

Area of a Triangle

$$
\text { Area }= \pm \frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

where x 's and y 's are the coordinates of the \qquad
Find the area of a triangle with vertices of $(2,4),(5,1)$, and $(2,-2)$

Cramer's Rule

1. Write the equations in \qquad form
2. Make a matrix out of the \qquad
2×2 System
$\begin{aligned} a x+b y & =e \\ c x+d y & =f\end{aligned}$ gives $x=\frac{\left|\begin{array}{ll}e & b \\ f & d\end{array}\right|}{\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|}, y=\frac{\left|\begin{array}{ll}a & e \\ c & f\end{array}\right|}{\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|}$

Algebra 2 1-06
$2 x+y=1$
$3 x-2 y=-23$

3×3 System

- Same as \qquad system
- The denominator is the determinant of the \qquad matrix and the numerator is the \qquad only with the column of the \qquad you are solving for replaced with the \qquad —.

```
2x-y+6z=-4
6x+4y-5z=-7
-4x-2y+5z=9
```


Algebra 2

1-07 Use Inverse Matrices to Solve Linear Systems (12.4)

Identity Matrix

The Identity Matrix \qquad with any matrix of the \qquad dimension equals the \qquad matrix.
$A \cdot I=I \cdot A=$ \qquad
This is the matrix equivalent of 1
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \quad\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
You cannot \qquad by a matrix!
So we \qquad by the \qquad of a matrix.
$A \cdot A^{-1}=$ \qquad

```
If }A,B\mathrm{ , and }X\mathrm{ are matrices, and
A}\cdot\boldsymbol{X}=\boldsymbol{B
A-1.A\cdotX = A-1.B
I}\cdotX=\mp@subsup{A}{}{-1}\cdot
X=
```


Inverse Matrix

The Rule for 2×2
If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then $A^{-1}=\frac{1}{\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]^{-1}
$$

```
[ccc}\begin{array}{cc}{-2}&{-1}\\{4}&{0}\end{array}\mp@subsup{]}{}{-1
```


Solve a matrix equation

$A X=B$
$\left[\begin{array}{cc}-3 & 4 \\ 5 & -7\end{array}\right] X=\left[\begin{array}{cc}3 & 8 \\ 2 & -2\end{array}\right]$

Solve a system of linear equations

$2 x+y=-13$
$x-3 y=11$

Algebra 2

1-Review

Take this test as you would take a test in class. When you are finished, check your work against the answers.
1-01
Graph the system and estimate the solution.

1. $\left\{\begin{array}{l}y=\frac{2}{3} x+1 \\ y=-\frac{1}{2} x-\frac{5}{2}\end{array}\right.$
2. $\left\{\begin{array}{r}2 x+y=3 \\ x-y=0\end{array}\right.$

Graph the system of inequalities.
3. $\left\{\begin{array}{l}y<2 x+1 \\ y \geq-x-2\end{array}\right.$

1-02
Solve the system algebraically.
4. $\left\{\begin{array}{c}y=x+2 \\ 2 x-2 y=3\end{array}\right.$
5. $\left\{\begin{array}{r}3 x-2 y=-7 \\ x+2 y=11\end{array}\right.$
6. Jim has two jobs. The first week he works 2 hours at job A and 3 hours at job B and earns $\$ 57.50$. The second week he works 5 hours at job A and 2 hours at job B and earns $\$ 75$. What is his pay rate at job A ?
7. How do you know if there are many solutions when you are solving algebraically?

1-03

Is the given point a solution to the system?
8. $\left\{\begin{aligned} x-y+2 z & =-7 \\ y-3 z & =11 \text {; point }(1,2,-3) \\ x+z & =-2\end{aligned}\right.$

Solve the system algebraically.
9. $\left\{\begin{aligned} x+y+z & =4 \\ -x+y-2 z & =-4 \\ -2 y-z & =-4\end{aligned}\right.$
10. What does the graph of a linear equation in three variables look like?

1-04
Simplify.
11. $\left[\begin{array}{cc}1 & 8 \\ -3 & 5\end{array}\right]-\left[\begin{array}{cc}-2 & 0 \\ -9 & -4\end{array}\right]$
12. $3\left[\begin{array}{ll}2 & 8\end{array}\right]$
13. $2\left[\begin{array}{c}3 \\ -4\end{array}\right]+\left[\begin{array}{l}1 \\ 5\end{array}\right]$

1-05
Simplify.
14. $\left[\begin{array}{ll}1 & 2\end{array}\right]\left[\begin{array}{ll}-2 & 3 \\ -1 & 4\end{array}\right]$
15. $\left[\begin{array}{cc}1 & 2 \\ -2 & -1\end{array}\right]\left[\begin{array}{ll}3 & -3 \\ 1 & -1\end{array}\right]$
16. How do you know if two matrices can be multiplied?

1-06
Evaluate the determinant.
17. $\left|\begin{array}{cc}3 & -1 \\ 2 & 7\end{array}\right|$
18. $\left|\begin{array}{ccc}1 & 3 & 0 \\ -2 & -1 & 2 \\ 4 & 0 & -1\end{array}\right|$
19. Find the area of the triangle with vertices $(1,2),(0,-2),(3,1)$.
$1-07$
20. What is the product of a matrix with its inverse?
21. Find inverse of $\left[\begin{array}{cc}2 & 1 \\ 1 & -3\end{array}\right]$.
22. Use an inverse to solve $\left\{\begin{aligned} 2 x+y & =8 \\ x-3 y & =-3\end{aligned}\right.$.

Created by Richard Wright - Andrews Academy
\qquad

Answers

1. $(-3,-1)$
2. $(1,1)$
3.

4. No solution
5. $(1,5)$
6. $\$ 10$ per hour
7. All variables are eliminated and the result is a true statement.
8. Yes
9. $(1,1,2)$
10. A plane
11. $\left[\begin{array}{ll}3 & 8 \\ 6 & 9\end{array}\right]$
12. [6- 24$]$
13. $\left[\begin{array}{c}7 \\ -3\end{array}\right]$
14. $[-411]$
15. $\left[\begin{array}{cc}5 & -5 \\ -7 & 7\end{array}\right]$
16. The number of columns in the 1 st matrix $=$ number of rows in the 2nd matrix
17. 23
18. 19
19. $\frac{9}{2}$
20. Identity matrix
21. $\left[\begin{array}{cc}\frac{3}{7} & \frac{1}{7} \\ \frac{1}{7} & -\frac{2}{7}\end{array}\right]$
22. $(3,2)$

